Mendeleev Communications

Assessment of the pre-exponent logarithm for diene synthesis reactions in solution based on the thermal effect

Vladimir G. Uryadov* and Evgenii N. Ofitserov

Kazan State Technological University, 420015 Kazan, Russian Federation. Fax: +7 843 238 5694; e-mail: vguryadov@mail.ru

DOI: 10.1070/MC2006v016n05ABEH002358

The pre-exponential factors for diene synthesis reactions in a liquid phase were calculated based on the thermal effects of test reactions.

Previously, 1-5 dealing with cycloaddition reactions, we have developed an approach based on an analysis of interaction of the pre-reaction complex of reagents possessing a rotational momentum of inertia, with electromagnetic waves. Based on this approach, we have developed² an isokinetic equation⁶ that reflects a linear symbatic relationship between activation parameters, as well as a system of equations³ analogous to the Evans-Polanyi-Semenov equation that expresses a linear antibatic relationship between the activation energies of exothermic gas-phase reactions and their thermal effects.⁷ Furthermore, using the expression for the rotational constant,8 we obtained a formula for the calculation of the pre-exponential factor (PF).4,5 This formula is based on the postulate that an electromagnetic wave transfers energy required to overcome the potential barrier.^{1,2} In order to meet the energy transfer condition imposed on the electromagnetic wave, it was assumed⁴ that its wave number k equals the activation energy E^{\neq} expressed in cm⁻¹ in accordance with the relationship⁸ $1000 \text{ cm}^{-1} = 12.5 \text{ kJ mol}^{-1}$.

Based on this approach, we calculated the logarithms of PFs⁴ for diene synthesis reactions in gas⁴ and liquid phases.⁵ The logarithms of PFs for reactions in gas phases were close to experimental data⁹ if the value of x, that is, one of the characteristics of the transition state position along the reaction coordinate, was taken into consideration.^{2,3} Using the value of x, we obtained the following expression for PF logarithm (log A_x):^{4,5}

$$\log A_x = x \log[SNh(M_1 + M_2)/4\pi^2 r^2 M_1 M_2 E^{\neq}], \tag{1}$$

where r is the distance between the molecules in the complex;

 M_1 and M_2 are the masses of the molecules that form the complex, kg mol⁻¹; h is the Planck constant $(6.62\times10^{-34}\,\mathrm{J~s})$; N is the Avogadro number; and S is the cross-section area of the molecular complex.

Let us represent the cross-section area as a function of squared radius ($S = \pi r^2$), substitute the numeric values of the Avogadro number and the Planck constant into (1), and use the SI atomic mass unit (1.66057×10⁻²⁷ kg)¹⁰:

$$\log A_x = x \log[191 \times 10^{17} (M_1 + M_2) / M_1 M_2 E^{\neq}]. \tag{2}$$

It is possible to obtain the relationship between thermal effect and activation entropy using a linear combination of the isokinetic relationship and the Evans-Polanyi-Semenov equation. Thus, one can expect a relationship between thermal effect Q and PF. Since thermal effect, like activation energy, is an energy parameter of a reaction, let us use formula (2) with thermal effect instead of activation energy in order to reveal the character of the possible relationship:

$$\log A_{x} = x \log[191 \times 10^{17} (M_{1} + M_{2}) / M_{1} M_{2} Q]. \tag{3}$$

Using formula (3), we have computed logarithms of PFs for a series of liquid-phase diene synthesis reactions, for which experimental data on thermal effects and PF logarithms are available. These include the diene syntheses of anthracene 1, tetracene 2, 5,11-dichlorotetracene 3, 9-methylanthracene 4, cyclopentadiene 5, pentacene 6 and 2,5-diphenylisobenzofuran 7 with fumarodinitrile 8, *N*-phenylmaleinimide 9, maleic anhydride 10, tetracyanoethylene 11, *N*-(*p*-nitrophenyl)arylmaleinimide 12, methyl acrylate 13 and dicyanoacetylene 14 in benzene 15,

Table 1 Topological index values for reagent and adduct molecules.

Dienophile	Diene							
	1 , <i>W</i> = 395	2 , W = 803	3 , W = 993	4 , W = 454	5 , <i>W</i> = 21	6 , W = 1458	7 , <i>W</i> = 1143	
8 , <i>W</i> = 64	841	1439	1629	_	_	2235		
9 , $W = 302$	_	2634	2978	1941	437	_		
10, $W = 58$	_	_	_	964	_	2337		
11 , $W = 221$	_	2076	2364	_				
12, $W = 566$	_	_	_	_	878			
13, $W = 41$	_	_	_	_	_	_	1789	
14 , $W = 73$	_	_	_	_	_	_	1822	

chlorobenzene **16**, toluene **17**, mesitylene **18**, 1,4-dioxane **19** and 1,2-dichloroethane **20**.

The values of x were calculated from the equation³

$$x^{3} + x\sqrt{(E^{\neq}L_{2}L_{3})/Q} - (E^{\neq}L_{2}L_{3})/2Q = 0.$$
(4)

Parameters L_2 and L_3 were calculated from the formulas³

$$L_2 = \sqrt[3]{W_{\text{products}}} - \sqrt[3]{W_{\text{reactants}}}; \quad L_3 = \left(\sqrt[3]{W_{\text{products}}}\right)^2 / \left(\sqrt[3]{W_{\text{reactants}}}\right)^2, \quad (5)$$

where $W_{\rm products \, (reactants)}$ are the values of Wiener topological index 11 for the product and reagent molecules, respectively.

Table 1 lists the values of topological index \hat{W} for reagent and adduct molecules for the test reactions. Table 2 presents published data on activation energies and thermal effects, as well as parameters L_i and values of x calculated from formula (4). We calculated the thermal effects for diene synthesis reactions of fumarodinitrile with tetracene, 5,11-dichlorotetracene and pentacene using the increment system reported. The calculation formula is as follows: 20

$$\Delta H_r = -69.04 + \delta h_r^{\text{IBF}} + \delta h_r^{\text{TCE}},\tag{6}$$

where $\Delta H_{\rm r}$ is the enthalpy of the reaction, kJ mol⁻¹; $\delta h_{\rm r}^{\rm IBF}$ is the reaction enthalpy increment for the diene with respect to 1,3-diphenylisobenzofuran, which equals -27.59 kJ mol⁻¹ for tetracene,²⁰ -9.20 kJ mol⁻¹ for 5,11-dichlorotetracene²⁰ and -46.82 kJ mol⁻¹ for pentacene;²⁰ $\delta h_{\rm r}^{\rm TCE}$ is the reaction enthalpy increment for the dienophile with respect to tetracyanoethylene, which equals -13.38 kJ mol⁻¹ for fumarodinitrile.²⁰

Substitution of the increment values into (6) and analysis of the thermochemical meaning gave the following thermal effects: 110 kJ mol⁻¹ for the reaction of fumarodinitrile with tetracene, 92 kJ mol⁻¹ for the reaction with 5,11-dichlorotetracene and 129 kJ mol⁻¹ for the reaction with pentacene.

Table 3 presents the values required for calculations by formula (3): molecular masses of the addends, kg mol⁻¹; thermal effects in m⁻¹; the value of expression under the logarithm sign (A) in dm³ mol⁻¹ s⁻¹; A logarithm; A logarithm with value x taken into account (log A_x), as well as experimental data on PF logarithms (log A_x).

logarithms ($\log A_{\rm exp}$). Based on data in Table 3, we plotted the calculated PF logarithms *versus* experimental data (Figure 1). The plots have the form of almost parallel straight lines, as suggested by similar slopes of the lines ($\tan \theta$). The relationships are characterised by fairly high correlation coefficients (0.985–0.999) and can be

Table 2 Activation energies, thermal effects, L_i parameters and x values.

Diene	Dieno- phile	Solvent	E/ kJ mol ⁻¹	Q/ kJ mol ⁻¹	L_2	L_3	x
1	8	16	6512	9019	1.7253	1.4973	0.5607
2	8	17	5712	110	1.7544	1.4018	0.4715
2	9	17	5213	12619	3.4719	1.7844	0.6375
2	11	15	3912	9719	2.6774	1.6018	0.5379
3	8	16	6012	92	1.5798	1.3342	0.4875
3	9	17	50^{13}	107^{19}	3.4872	1.7422	0.6666
3	11	15	4112	78^{19}	2.6536	1.5594	0.5947
4	9	19	5614	114^{19}	3.3643	1.8750	0.6919
4	10	15	56^{15}	101^{19}	1.8785	1.5248	0.5190
5	9	19	3416	142^{19}	0.7274	1.2232	0.2106
5	12	19	30^{16}	140^{19}	1.2026	1.3079	0.2600
6	8	18	40^{12}	129	1.5717	1.2919	0.3450
6	10	17	41^{17}	132^{19}	1.7827	1.3344	0.3707
7	13	20	4818	8518	1.5604	1.3107	0.4525
7	14	20	2718	12918	1.5401	1.3094	0.2879

represented by the general formula

$$\log A_x = \log A_{\exp} + B,\tag{7}$$

where the constant B is 3.57, 1.97, -0.19 or -1.32, which is close to amounts that are multiples of 0.25, namely, 3.50, 2.00, -0.25 and -1.25. We called this trend the multiplicity factor.

Based on the series of numeric coefficients presented, we can assume that the solution of the equations and formulas we use consists of a discrete set of PF values. Discrete sets of states are

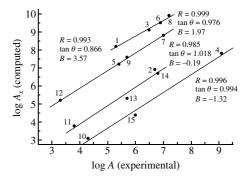


Figure 1 Calculated PF logarithms vs. experimental data. The numbers of the points correspond to the data in Table 3.

Table 3 Data for calculation of PF logarithm ($\log A_x$) by formula (3) in comparison with published data ($\log A_{\exp}$).

No.	Diene	Dienophile	Solvent	$M_{ m D}$	$M_{ m DPh}$	$Q/10^5 \text{ m}^{-1}$	$A/10^{14} \ \mathrm{dm^3 \ mol^{-1} \ s^{-1}}$	$\log A$	$\log A_x$	$\log A_{\mathrm{exp}}$
1	1	8	16	0.17824	0.07807	7.20	4.3541	14.64	8.2	5.312
2	2	8	17	0.22830	0.07807	8.80	3.7308	14.57	6.9	6.7^{12}
3	2	9	17	0.22830	0.17315	10.08	1.9243	14.28	9.1	6.5^{13}
4	2	11	15	0.22830	0.12808	7.76	2.9998	14.47	7.8	9.1^{12}
5	3	8	16	0.29728	0.07807	7.36	4.1971	14.62	7.2	5.4^{12}
6	3	9	17	0.29728	0.17315	8.56	2.0392	14.31	9.5	6.9^{13}
7	3	8	15	0.29728	0.12808	6.24	3.4195	14.53	8.6	7.0^{12}
8	4	9	19	0.19227	0.17315	9.12	2.2988	14.36	9.9	7.2^{14}
9	4	10	15	0.19227	0.09806	8.08	3.6401	14.56	7.6	5.7^{15}
10	5	9	19	0.06611	0.17315	11.36	3.5143	14.55	3.2	4.3^{16}
11	5	12	19	0.06611	0.21817	11.2	3.3612	14.53	3.8	3.8^{16}
12	6	8	18	0.27836	0.07807	10.32	3.0355	14.48	5.2	3.3^{12}
13	6	10	17	0.27836	0.09806	10.56	2.4943	14.39	5.3	5.7^{17}
14	7	13	20	0.27032	0.10012	6.8	3.8445	14.58	6.7	6.8^{18}
15	7	14	20	0.27032	0.07603	10.32	3.1189	14.49	4.4	6.0^{18}

typical of quantum systems. In particular, the energy of rotational molecular motion is a discrete quantity. The concept of rotational motion of molecules in a liquid phase underlies our approach.^{1–5} Furthermore, the relationships obtained allowed us to assume that the energy evolved as the thermal effect resulting from the reaction act is directly involved in this act.

References

- 1 V. G. Uryadov and E. N. Ofitserov, *Chemistry and Computational Simulation, Butlerov Commun.*, 2003, 1, 1.
- $2\;\;$ V. G. Uryadov and E. N. Ofitserov, $\textit{Mendeleev Commun.},\,2003,\,39.$
- 3 V. G. Uryadov and E. N. Ofitserov, Mendeleev Commun., 2003, 259.
- 4 V. G. Uryadov and E. N. Ofitserov, Mendeleev Commun., 2006, 43.
- 5 V. G. Uryadov and E. N. Ofitserov, *Mendeleev Commun.*, 2006, 237.
- L. P. Hammett, *Physical Organic Chemistry*, McGraw-Hill Book Company, New York, 1970.
- 7 N. N. Semenov, O nekotorykh problemakh khimicheskoi kinetiki i reaktsionnoi sposobnosti (On Some Problems of Chemical Kinetics and Reactivity), Nauka, Moscow, 1958 (in Russian).
- 8 P. W. Atkins, *Physical Chemistry*, Oxford University Press, London, 1980.
- A. Wassermann, Diels-Alder Reactions, Elsevier, Amsterdam-London-New York, 1965.
- 10 H. Kuchling, Physik, VEB Fachbuchverlag, Leipzig, 1980.
- 11 H. Wiener, J. Am. Chem. Soc., 1947, 69, 17.

- 12 J. D. Samuilov, V. G. Uryadov, L. F. Uryadova and A. I. Konovalov, Zh. Org. Khim., 1986, 22, 1573 [J. Org. Chem. USSR (Engl. Transl.), 1986, 22, 1415]
- 13 J. D. Samuilov, L. F. Uryadova, B. N. Solomonov and A. I. Konovalov, Zh. Org. Khim., 1975, 11, 1917 [J. Org. Chem. USSR (Engl. Transl.), 1975, 11, 1931].
- 14 A. I. Konovalov, B. N. Solomonov and A. N. Ustugov, *Dokl. Akad. Nauk SSSR*, 1973, **211**, 102 [*Dokl. Chem. (Engl. Transl.)*, 1973, **211**, 532].
- V. D. Kiselev, A. I. Konovalov and I. M. Shakirov, Zh. Org. Khim., 1985, 21, 1215 [J. Org. Chem. USSR (Engl. Transl.), 1985, 21, 1105].
- 16 A. I. Konovalov, V. D. Kiselev and J. D. Samuilov, *Dokl. Akad. Nauk SSSR*, 1968, **179**, 866 [*Dokl. Chem. (Engl. Transl.)*, 1968, **179**, 295].
- 17 J. D. Samuilov, V. G. Uryadov, L. F. Uryadova and A. I. Konovalov, Zh. Org. Khim., 1985, 21, 1249 [J. Org. Chem. USSR (Engl. Transl.), 1985, 21, 1137].
- 18 J. D. Samuilov, R. L. Nurullina and A. I. Konovalov, Zh. Org. Khim., 1983, 19, 1431 [J. Org. Chem. USSR (Engl. Transl.), 1983, 19, 1285].
- 1983, 19, 1431 [J. Org. Chem. USSR (Engl. Transl.), 1983, 19, 1285].
 A. I. Konovalov and V. D. Kiselev, Zh. Org. Khim., 1986, 22, 1133
 [J. Org. Chem. USSR (Engl. Transl.), 1986, 22, 1018].
- A. I. Konovalov, Usp. Khim., 1983, 52, 1852 (Russ. Chem. Rev., 1983, 52, 1064).

Received: 16th March 2006; Com. 06/2703